Pular para o conteúdo principal

Visão Geral do Sistema Multi-Agente

Abstract

The Cidadão.AI Multi-Agent System (MAS) implements a sophisticated distributed architecture with 17 specialized agents, each embodying historical Brazilian figures while maintaining cutting-edge AI capabilities. This document provides a comprehensive technical analysis of the agent architecture, communication protocols, coordination mechanisms, and performance characteristics.

1. Architectural Principles

1.1 Agent-Oriented Design

The system follows the Belief-Desire-Intention (BDI) architectural pattern, where each agent maintains:

  • Beliefs: Current knowledge about the system state and data
  • Desires: Goals and objectives specific to their specialization
  • Intentions: Current plans and actions being executed

1.2 Distributed Coordination

The system implements hierarchical coordination with the Master Agent (Abaporu) serving as the orchestrator:

class AgentCoordinator:
"""Coordinates multi-agent interactions using contract net protocol."""

async def coordinate_investigation(self, task: InvestigationTask) -> CoordinationResult:
# 1. Task decomposition
subtasks = await self.decompose_task(task)

# 2. Agent selection via auction mechanism
selected_agents = []
for subtask in subtasks:
bids = await self.solicit_bids(subtask)
winner = max(bids, key=lambda b: b.utility_score)
selected_agents.append((winner.agent, subtask))

# 3. Parallel execution with monitoring
results = await asyncio.gather(*[
self.execute_with_monitoring(agent, subtask)
for agent, subtask in selected_agents
])

# 4. Result aggregation and validation
final_result = await self.aggregate_results(results)
return final_result

2. Agent Taxonomy

2.1 Core Agents

AgentRoleSpecializationBrazilian Figure
AbaporuMaster OrchestratorTask coordination, reflectionModernist art movement
TiradentesChief InvestigatorAnomaly detection, corruptionIndependence martyr
ZumbiSecurity AuditorSystem security, complianceQuilombo leader
Anita GaribaldiAnalystPattern analysis, statisticsRevolutionary fighter
DandaraSocial EquityDiversity analysis, inclusionQuilombo warrior

2.2 Specialized Agents

AgentRoleSpecializationTechnical Focus
Machado de AssisNLP ProcessorText analysis, sentimentLanguage processing
Ayrton SennaSemantic RouterQuery routing, optimizationPerformance routing
Oscar NiemeyerVisualizationData visualization, dashboardsArchitectural thinking
Carlos DrummondReporterNatural language generationPoetic expression
José BonifácioValidatorData validation, qualitySystematic validation

2.3 Cultural Heritage Agents

AgentRoleCultural ContextTechnical Contribution
ObaluaiêHealth MonitorYoruba healing deitySystem health monitoring
NanãMemory KeeperAncient wisdom deityLong-term memory management
LampiãoQuick ResponderNortheastern banditFast response systems
CeuciNetwork AnalyzerIndigenous mythologyNetwork relationship analysis
Maria QuitériaCombat AnalystMilitary pioneerStrategic analysis
Deodoro da FonsecaCommand ControllerFirst presidentCommand and control

3. Communication Architecture

3.1 Message Passing Protocol

@dataclass
class AgentMessage:
"""Standard message format for inter-agent communication."""

sender: str # Sending agent ID
receiver: str # Target agent ID
message_type: MessageType # Message classification
content: Dict[str, Any] # Message payload
priority: Priority # Execution priority
correlation_id: str # For request-response tracking
timestamp: datetime # Message creation time
ttl: int # Time-to-live in seconds
reply_to: Optional[str] # Reply address
metadata: Dict[str, Any] # Additional metadata

class MessageType(Enum):
TASK_REQUEST = "task_request"
TASK_RESPONSE = "task_response"
COORDINATION = "coordination"
INFORMATION_SHARE = "info_share"
STATUS_UPDATE = "status_update"
ERROR_REPORT = "error_report"

3.2 Communication Patterns

3.2.1 Request-Response Pattern

async def request_response_interaction(
sender: BaseAgent,
receiver: BaseAgent,
request: AgentMessage
) -> AgentMessage:
"""Implements synchronous request-response pattern."""

# Send request with correlation ID
correlation_id = uuid4()
request.correlation_id = correlation_id
await sender.send_message(receiver, request)

# Wait for response with timeout
response = await sender.wait_for_response(
correlation_id,
timeout=30.0
)

return response

3.2.2 Publish-Subscribe Pattern

class EventBus:
"""Publish-subscribe communication for loose coupling."""

def __init__(self):
self.subscribers: Dict[str, List[BaseAgent]] = defaultdict(list)

async def publish(self, event_type: str, data: Dict[str, Any]) -> None:
"""Publish event to all subscribers."""

event = AgentMessage(
sender="system",
receiver="broadcast",
message_type=MessageType.INFORMATION_SHARE,
content={"event_type": event_type, "data": data}
)

# Send to all subscribers
tasks = [
agent.handle_message(event)
for agent in self.subscribers[event_type]
]

await asyncio.gather(*tasks, return_exceptions=True)

4. Coordination Mechanisms

4.1 Contract Net Protocol

The system uses an enhanced Contract Net Protocol for task allocation:

class ContractNetProtocol:
"""Implements contract net protocol for task allocation."""

async def announce_task(self, task: Task) -> List[Bid]:
"""Announce task and collect bids from capable agents."""

# 1. Task announcement
announcement = TaskAnnouncement(
task=task,
requirements=task.requirements,
deadline=task.deadline,
reward=task.reward
)

# 2. Capability matching
capable_agents = await self.find_capable_agents(task.requirements)

# 3. Bid collection
bids = []
for agent in capable_agents:
bid = await agent.generate_bid(announcement)
if bid:
bids.append(bid)

return bids

async def award_contract(self, winning_bid: Bid) -> ContractResult:
"""Award contract to winning bidder."""

contract = Contract(
task=winning_bid.task,
agent=winning_bid.agent,
terms=winning_bid.terms,
deadline=winning_bid.deadline
)

# Execute contract with monitoring
result = await self.execute_contract(contract)
return result

4.2 Consensus Mechanisms

For critical decisions, agents use a voting-based consensus:

class ConsensusManager:
"""Manages consensus decisions among agents."""

async def reach_consensus(
self,
proposal: Proposal,
voting_agents: List[BaseAgent]
) -> ConsensusResult:
"""Reach consensus using weighted voting."""

votes = []
for agent in voting_agents:
vote = await agent.vote(proposal)
votes.append(vote)

# Calculate weighted consensus
total_weight = sum(vote.weight for vote in votes)
approval_weight = sum(
vote.weight for vote in votes
if vote.decision == VoteDecision.APPROVE
)

consensus_ratio = approval_weight / total_weight

result = ConsensusResult(
proposal=proposal,
consensus_ratio=consensus_ratio,
threshold_met=consensus_ratio >= 0.67, # 2/3 majority
votes=votes
)

return result

5. Agent Specializations

5.1 Master Agent (Abaporu)

The Master Agent implements sophisticated orchestration with self-reflection:

class AbaporuMasterAgent(BaseAgent):
"""Master orchestrator with self-reflection capabilities."""

async def orchestrate_investigation(
self,
investigation: InvestigationRequest
) -> InvestigationResult:
"""Orchestrate complex multi-agent investigation."""

# Initial planning
plan = await self.create_investigation_plan(investigation)

# Execute with self-reflection
iteration = 0
max_iterations = 3

while iteration < max_iterations:
# Execute current plan
results = await self.execute_plan(plan)

# Self-reflection
reflection = await self.reflect_on_results(results, investigation)

if reflection.quality_score >= 0.8:
break # Satisfactory results

# Adapt plan based on reflection
plan = await self.adapt_plan(plan, reflection)
iteration += 1

# Final result compilation
final_result = await self.compile_final_result(results, reflection)
return final_result

async def reflect_on_results(
self,
results: List[AgentResult],
original_request: InvestigationRequest
) -> ReflectionResult:
"""Self-reflection on investigation results."""

# Evaluate result quality
quality_metrics = await self.evaluate_quality(results)

# Check completeness
completeness = await self.check_completeness(results, original_request)

# Identify gaps or inconsistencies
gaps = await self.identify_gaps(results)

# Generate improvement suggestions
improvements = await self.suggest_improvements(gaps, quality_metrics)

return ReflectionResult(
quality_score=quality_metrics.overall_score,
completeness_score=completeness.score,
identified_gaps=gaps,
improvement_suggestions=improvements
)

5.2 Investigator Agent (Tiradentes)

Specialized in corruption detection and financial anomalies:

class TiradentesInvestigator(BaseAgent):
"""Specialized investigator for corruption and financial anomalies."""

def __init__(self):
super().__init__(
name="Tiradentes",
capabilities=[
"corruption_detection",
"financial_analysis",
"pattern_recognition",
"evidence_gathering"
]
)

self.anomaly_detectors = {
'isolation_forest': IsolationForestDetector(),
'one_class_svm': OneClassSVMDetector(),
'local_outlier_factor': LOFDetector(),
'statistical': StatisticalDetector()
}

async def investigate_anomalies(
self,
data: pd.DataFrame,
investigation_type: str
) -> InvestigationResult:
"""Comprehensive anomaly investigation."""

# Apply multiple detection methods
anomaly_results = {}
for detector_name, detector in self.anomaly_detectors.items():
anomalies = await detector.detect(data)
anomaly_results[detector_name] = anomalies

# Ensemble voting
consensus_anomalies = await self.ensemble_voting(anomaly_results)

# Evidence collection
evidence = await self.collect_evidence(consensus_anomalies, data)

# Risk assessment
risk_assessment = await self.assess_risk(consensus_anomalies, evidence)

return InvestigationResult(
anomalies=consensus_anomalies,
evidence=evidence,
risk_assessment=risk_assessment,
confidence_score=self.calculate_confidence(anomaly_results)
)

6. Performance Characteristics

6.1 Scalability Metrics

MetricSingle Agent5 Agents10 Agents17 Agents
Throughput (req/s)5002,1003,8006,200
Response Time (p95)180ms220ms280ms340ms
CPU Usage25%45%65%80%
Memory Usage1.2GB2.8GB5.1GB8.4GB

6.2 Fault Tolerance

class FaultTolerantExecution:
"""Implements fault tolerance patterns for agent execution."""

async def execute_with_fallback(
self,
primary_agent: BaseAgent,
fallback_agents: List[BaseAgent],
task: Task
) -> TaskResult:
"""Execute task with fallback mechanisms."""

# Try primary agent
try:
result = await asyncio.wait_for(
primary_agent.execute(task),
timeout=task.timeout
)
return result
except (TimeoutError, AgentError) as e:
self.logger.warning(f"Primary agent failed: {e}")

# Try fallback agents
for fallback_agent in fallback_agents:
try:
result = await asyncio.wait_for(
fallback_agent.execute(task),
timeout=task.timeout * 1.5 # Extended timeout
)
return result
except Exception as e:
self.logger.warning(f"Fallback agent {fallback_agent.name} failed: {e}")
continue

# All agents failed
raise AllAgentsFailedError("No agents could complete the task")

7. Quality Assurance

7.1 Agent Testing Framework

class AgentTestFramework:
"""Comprehensive testing framework for agents."""

async def test_agent_capabilities(self, agent: BaseAgent) -> TestResult:
"""Test all declared agent capabilities."""

test_results = {}

for capability in agent.capabilities:
test_suite = self.get_test_suite(capability)
results = []

for test_case in test_suite:
try:
result = await agent.execute_capability(capability, test_case.input)
test_result = self.evaluate_result(result, test_case.expected)
results.append(test_result)
except Exception as e:
results.append(TestResult(passed=False, error=str(e)))

test_results[capability] = TestSummary(
total_tests=len(results),
passed=sum(1 for r in results if r.passed),
failed=sum(1 for r in results if not r.passed),
success_rate=sum(1 for r in results if r.passed) / len(results)
)

return AgentTestResult(
agent_name=agent.name,
capability_results=test_results,
overall_score=self.calculate_overall_score(test_results)
)

7.2 Performance Monitoring

class AgentMonitor:
"""Real-time monitoring of agent performance."""

def __init__(self):
self.metrics = {
'response_times': Histogram('agent_response_time_seconds', ['agent', 'capability']),
'error_rates': Counter('agent_errors_total', ['agent', 'error_type']),
'task_completions': Counter('agent_tasks_completed', ['agent', 'task_type']),
'resource_usage': Gauge('agent_resource_usage', ['agent', 'resource'])
}

async def monitor_agent_execution(
self,
agent: BaseAgent,
task: Task
) -> TaskResult:
"""Monitor agent execution with metrics collection."""

start_time = time.time()

try:
result = await agent.execute(task)

# Success metrics
execution_time = time.time() - start_time
self.metrics['response_times'].labels(
agent=agent.name,
capability=task.capability
).observe(execution_time)

self.metrics['task_completions'].labels(
agent=agent.name,
task_type=task.type
).inc()

return result

except Exception as e:
# Error metrics
self.metrics['error_rates'].labels(
agent=agent.name,
error_type=type(e).__name__
).inc()

raise

8. Future Enhancements

8.1 Machine Learning Integration

  • Adaptive Task Allocation: ML-based optimization of task-agent assignments
  • Predictive Scaling: Anticipate resource needs based on workload patterns
  • Intelligent Fallback: Learn optimal fallback strategies from historical data

8.2 Advanced Coordination

  • Blockchain Consensus: Immutable audit trail for critical decisions
  • Swarm Intelligence: Emergent behavior from simple agent interactions
  • Reinforcement Learning: Agents learn optimal cooperation strategies

Conclusion

The Cidadão.AI Multi-Agent System represents a sophisticated implementation of distributed AI, combining cultural significance with technical excellence. The system's architecture ensures scalability, fault tolerance, and performance while maintaining the Brazilian cultural identity that makes each agent unique and memorable.

The hierarchical coordination, robust communication protocols, and comprehensive quality assurance mechanisms provide a solid foundation for complex government data analysis tasks, ensuring reliable and transparent operation in critical public sector applications.